

Committed to a Healthy and Vital Thames River

Upper Thames River Stream Flow Statistics Update

Mark Helsten. P.Eng. M.E.Sc. Senior Water Resources Engineer 03 December 2014

Outline

- Background/Historical Context
- Hydrology
- Frequency Analyses
 - Flow Naturalization
- Results
 - Maximum Mean Daily (MMD)
 - Maximum Instantaneous Discharge (MID)
 - Ten Day Annual Maximum Runoff
 Volumes
- Attenuation of Flood Peaks through Reservoirs
- Summary/Conclusions

Background/Historical Context

- Frequency of flows important for determining flooding regulation limits
- Last major review of watershed stats 1984 via Glengowan report
- Many more hydrometric stations and years of data since 1984

Hydrology

 "Statistical analysis in hydrology consists of estimating future frequency or probability of hydrologic events based on information contained in hydrologic records"

Conservation Authorities of Ontario

Conservation Authorities of Ontario

Hydrology

- 20 active Environment Canada maintained hydrometric stations
- 9 discontinued hydrometric stations
- 23 hydrometric stations with 20+ years of data
- 18 stations with 50+ years of data
- 6 stations with 75+ years data
- First two stations established in 1915

Hydrology

- Most major flood events in the Thames River basin occur in the winter months
- Only 5 10% of MMD flood events occur in non winter months

Frequency Analysis

2 25 50 100 250 5 10 1000 Return Pd (Yrs) 800 **Discharge** (cms) 600 400 200 0 0.900 0,100 0,800 0,050 0,500 0.200 0.960,980,990,996 Non-Exceedence Probability

Thames River at Ealing Maximum Instantaneous Discharge

- "Plotting position" provides empirical probability estimates
- Maximum annual (winter/spring) values sorted from highest to lowest value and plotted with probability estimated as: P = (k-0.5)/(n-1)

Frequency Analysis

Thames River at Ealing Maximum Instantaneous Discharge

- "Plotting position" provides empirical probability estimates
- Maximum annual (winter/spring) values sorted from highest to lowest value and plotted with probability estimated as: P = (k-0.5)/(n-1)

Non-Exceedence Probability

Frequency analysis

 Log Pearson Type 3 Probability Distribution is fit to data Thames River at Ealing (02GD001)

Frequency analysis

 Log Pearson Type 3 Probability
 Distribution is fit to data Thames River at Ealing (02GD001)

Frequency analysis

- Log Pearson Type 3 Probability Distribution is fit to data
 - Frequency analysis undertaken at 19 hydrometric stations with 20 or more years of data

Thames River at Ealing (02GD001)

- Reservoirs change the nature of hydrology, and we are interested in natural conditions
- 3 large reservoirs to be naturalized before statistics can be evaluated: Fanshawe, Wildwood and Pittock reservoirs
- Accomplished by area transforming upstream flows, or by "back routing"

Results (MMD)

- Some stations very similar to past analyses (ie South Branch flow at Ealing)
- North branch flows are significantly higher with updated analysis

Return Period MMD From Single Station Analysis (Glengowan vs 2014 results)

Return Period (years)

Results (MID)

- Comparison of 2014 results with values used in current HEC –RAS models for flood plain mapping
- Byron, Ealing St. Marys very similar.
 Fanshawe Dam values great in 2014 study

Return Period Discharges From Single Station Analysis (HEC-RAS vs 2014 results)

Return Period (years)

Results (Ten Day Runoff)

- Generally a reduction in 10 day runoff at lower frequencies
- Big disparity on North Thames river at St. Marys

Return Period MMD From Single Station Analysis (Glengowan vs 2014 results)

Return Period (years)

- "Dams can reduce flood risk downstream, but they do not eliminate the risk. The purpose of a dam is to protect existing development, but not to free up additional land and allow for new development."
- Still of interest to determine downstream attenuated frequency flows.
- Natural frequency design hydrographs are used as input to reservoirs, which are then routed downstream to determine the attenuated frequency.
- Useful in design of other aspects of a flood control system (ie flood walls, channels etc)

•Fanshawe Reservoir:

- •North Thames River
- •1450 km²
- •25 mm runoff storage

•Fanshawe Reservoir:

- •North Thames River
- •1450 km²
- •25 mm runoff storage•Wildwood Reservoir
 - •Trout Creek
 - •140 km²
 - •140 mm runoff storage

•Fanshawe Reservoir:

- •North Thames River
- •1450 km²

•25 mm runoff storage•Wildwood Reservoir

- •Trout Creek
- •140 km²

•140 mm runoff storage•Pittock reservoir

- •Thames River
- •245 km²

•70 mm runoff storage

 Design hydrograph based on modelled hydrograph (to capture timing), ten day statistics to capture volume, and MID statistics to capture peak.

- Spreadsheet based routing routine uses knowledge of inflow, and the storageelevation-discharge characteristics of the reservoir to analyze operation scenarios
- For 1:100 year inflow:
 - Qin 1100 cms,
 - Qout 820 cms

 Set maximum allowable reservoir elevation to 80% available storage use. (ie retain 20%)

			1:250	1:100
	Location		Discharge (m3/s)	Discharge (m3/s)
16% reduction ———>	Trout Creek at St. Marys	Unregulated	151	128
		Attenuated	124	116
2% reduction>	North Thames River at St. <u>Marys</u>	Unregulated	1070	956
		Attenuated	1063	935
38% reduction	Thames River at	Unregulated	245	210
	Woodstock	Attenuated	147	127
10% reduction	Thames River at	Unregulated	288	259
	Ingersoll	Attenuated	264	228
22% reduction>	Thames River below <u>Fanshawe</u> Dam	Unregulated	1240	1100
		Attenuated	960	842
26% reduction>	North Thames River at Medway Confluence	Unregulated	1455	1290
		Attenuated	1075	927
5% reduction ———>	Byron	Unregulated	1920	1740
		Attenuated	1885	1645

- Process completed for each of the three major reservoirs, for a series of different return period inflows, with different points of interest investigated.
- Generally Fanshawe Dam can attenuate 25% of flood peaks immediately downstream, and this effect is lessened moving downstream and increasing drainage area.
- Pittock Reservoir is effective at reducing flooding in Ingersoll, but effects are very limited in London
- Wildwood reduces flooding on Trout creek, but little effect on North Thames River.

Summary/Conclusions

- Statistics have changed since 1984 Glengowan hydrology study
- Thames River above forks not that different from past analyses (MID, MMD)
- North Thames River between Fanshawe and St. Marys increased
- North Thames River above St. Marys decreased
- Flood lines across the watershed should be re-evaluated using new statistics
- Ten Day runoff stats decreased
 - Possible this is from methodology of calculating the ten day values

Summary/Conclusions

- North Thames River changed flows
 - Glengowan study dismissed St. Marys stats as they produced a larger discharge than the downstream natural Fanshawe flow
 - Used a linear relationship with the downstream station, Thorndale, as a surrogate. Thorndale many fewer years of data.
 - Present study, with more data, did not have the same issue
 - At headwaters, flows reduced at all return periods (~25%). Unclear where the data currently being used in models comes from.
- Hydrologic Models should be calibrated to the new 10-day runoff statistics and peak MID values found in the new study (Underway)
- Flood attenuation is investigated, but reduced flows should not be used to determine extend of downstream flood plain

Questions?

