

Committed to a Healthy and Vital Thames River

Application of Radar QPE

Jack McKee December 3, 2014

Topics

- Context
- Precipitation Estimation Techniques
- Study Methodology
- Preliminary Results
- Future Work
- Questions

Introduction

- Accurate precipitation data is required for a number of different applications including:
 - Flood forecasting and warning
 - Drought monitoring
 - Meteorological now-casting
 - Post-storm analysis
 - Effect of climate change on precipitation patterns
 - Etc.

Hydrology

 Hydrologists rely on precipitation fields to forecast runoffs

Hydrological modeling

 Hydrological model attempts to model the complex physical characteristics of a basin in order to determine stream flow

"Rainfall is the main and vital [input] for hydrological modeling and rainfall uncertainty dominates the uncertainty of the model" Golding (2009)

Goal

Develop a reliable automated process for obtaining precipitation estimates using stateof-the-art techniques for the acquisition and estimation of spatially distributed rainfall fields

Topics

- Context
- Precipitation Estimation Techniques
- Study Methodology
- Preliminary Results
- Future Work
- Questions

Precipitation Estimation

Waubuno Stream & Rain Gauge (UTRCA)

Exeter Radar Station (Environment Canada)

Rain Gauges - Definition

- Most widely used technique for precipitation estimation
- Rain gauges measure the depth of rainfall over a set time for a given location

• Provide accurate point measurements

- Two Critical Sources of Error:
 - inability of point measurements to accurately characterize the spatial distribution of the rainfall field
 - systematic and calibration errors
- Significantly impact the ability to use rain gauge measurement to develop an understanding of the distribution of precipitation

Legend Precipitation (mm)

Radar - Definition

• Transmits pulses of microwave to detect precipitation particles in the atmosphere

Radar - Definition

- Actually measures reflectivity not rainfall
- Indirectly measures rainfall intensity

Marshall-Palmer (1948) Relationship $Z = aR^b$

reflectivity Z (mm^6/m^3)

precipitation rate R (mm/hr)

Radar - Errors

- Radar suffers from numerous sources of error which influence the accuracy of the depth measurements
- Creutin et al. (2000) characterized three major sources of radar error for QPE:
 - Electronic instability and mis-calibration of the radar system
 - Beam geometry
 - Fluctuation in atmospheric conditions

Radar - Errors

Radar - Errors

 Radome wetting caused underestimation of rainfall accumulation of 100 mm (Boodoo et al. 2014)

Comparison

Kim et al. 2008 modified from Robbins et al. 2004

Merging Methods

- Developed to take advantage of each individual instruments strength while minimizing their respective weaknesses
- "The combined use of radar and rain gauges to measure rainfall is superior to the use of either separately"

Wilson (1970, p. 495)

Assumptions

- 1. Gauge measurements are accurate for the gauges location
- 2. Radar successfully measures relative spatial and temporal variability's of precipitation
- 3. Gauge and radar measurements are valid for the same location in time and space
- Relationships based on comparisons between gauges and radar(s) are valid for other locations in space and time

Topics

- Context
- Precipitation Estimation Techniques
- Study Methodology
- Preliminary Results
- Future Work
- Questions

Objectives

- Study broken down into two parts:
 - 1. Compare the accuracy of gauge-radar merging schemes in the UTRb;
 - 2. Assess the impact on accuracy of predicted flows in the Thames River and its tributaries
 - Implement the "best" estimation technique in a near-real time automated process

Objectives

- Study broken down into two parts:
 - 1. Compare the accuracy of gauge-radar merging schemes in the UTRb;
 - 2. Assess the impact on accuracy of predicted flows in the Thames River and its tributaries

Study Methodology

- Rainfall estimations are compared against an independent verification network assumed to represent the "true" rainfall field
- Previous study has shown several factors to have an influence on the overall accuracy including:
 - Rain gauge density
 - Temporal resolution of correction
 - Storm type

MFB

- Mean Field Bias (MFB) correction
- Changes the multiplicative a factor in the Z-R relationship
- Correction is applied evenly to entire spatial domain

$$Z = aR^{b}$$

$$C = \frac{\sum_{i=1}^{N} G_i}{\sum_{i=1}^{N} R_i}$$

BSA

- Brandes Spatial Adjustment (BSA)
- Assumes radar bias is spatially dependent due to atmospheric and conditions
- Uses Barnes objective analysis (Barnes, 1964) to distributed correction factors

N

$$WT_{i} = \exp\left(\frac{-d^{2}}{EP}\right) \qquad \qquad F_{1} = \frac{\sum_{i=1}^{N} WT_{i} * G_{i}}{\sum_{i=1}^{N} WT_{i}}$$

LB

- Local Bias (LB) correction with ordinary kriging
- Adopts the geostatistical method of kriging to distributed correction factors
- The regionalized variable is the correction factor at the gauge location which describes radar bias at discrete locations across the radar field

CM

- Conditional Merging (CM) also known as kriging with radar based error
- Assumes radar observation produces a true field of unknown values, while the rain gauges produce an unknown field of true values

$$\varepsilon_R(s_i) = R(s_i) - R_K(s_i).$$
 Corr.Precip $(s_i) = G_K(s_i) + \varepsilon_R(s_i).$

Study Area

- Upper Thames River Basin (UTRb)
- 3421 km²
- Delineated into 34 sub-basins

Data Description – Rain Gauges

- Upper Thames River Conservation Authority operates 20 tipping bucket rain gauges
- Record on an hourly time interval
- 14 gauges selected for correction
- 4 gauges selected as an independent verification network
- 2 were located in the shadow zone

Data Description – Rain Gauges

Data Description - Radar

- Radar provided by Environment Canada's meteorological research center
- Corrected QPE is only provided up to a range of 120 km

Data Description - Radar

Topics

- Context
- Precipitation Estimation Techniques
- Study Methodology
- Preliminary Results
- Future Work
- Questions

Variability

Hourly accumulation for each estimation technique September 10, 2014, 22:00 (UTC)

RMSE

MRE

Gauge Sensitivity

Temporal Sensitivity

Topics

- Context
- Precipitation Estimation Techniques
- Study Methodology
- Preliminary Results
- Future Work
- Questions

Future Work

- Test the effect of storm type (based on seasonal differences)
- Assess the impact of the merging methods on simulated flows in the UTRb using a semi-distributed hydrological model

UPPER THAMES RIVER

CONSERVATION AUTHORITY

